This paper is concerned with the problem of reconstructing an unknown rank-one matrix with prior structural information from noisy observations. While computing the Bayes-optimal estimator seems intractable in general due to its nonconvex nature, Approximate Message Passing (AMP) emerges as an efficient first-order method to approximate the Bayes-optimal estimator. However, the theoretical underpinnings of AMP remain largely unavailable when it starts from random initialization, a scheme of critical practical utility. Focusing on a prototypical model called $\mathbb{Z}_{2}$ synchronization, we characterize the finite-sample dynamics of AMP from random initialization, uncovering its rapid global convergence. Our theory provides the first non-asymptotic characterization of AMP in this model without requiring either an informative initialization (e.g., spectral initialization) or sample splitting.
翻译:本文关注重建一个未知的一等矩阵的问题,该矩阵有来自噪音观测的先前结构信息。计算贝亚-最佳估计器一般似乎难以解决,因为其非混凝土性质,近似信息传递(AMP)是接近贝亚-最佳估计器的一种有效的第一阶方法。然而,当AMP的理论基础从随机初始化(一个关键的实用实用计划)开始时,它基本上仍然无法使用。侧重于一个叫做$\mathbb ⁇ 2}美元同步的原型模型时,我们从随机初始化中将AMP的有限抽样动态定性为随机初始化,发现其迅速的全球趋同。我们的理论提供了这一模型中第一个非简易的AMP特征,而不需要信息化初始化(例如光谱初始化)或样本分离。