We prove a quantitative result for the approximation of functions of regularity $C^k$ (in the sense of real variables) defined on the complex cube $\Omega_n := [-1,1]^n +i[-1,1]^n\subseteq \mathbb{C}^n$ using shallow complex-valued neural networks. Precisely, we consider neural networks with a single hidden layer and $m$ neurons, i.e., networks of the form $z \mapsto \sum_{j=1}^m \sigma_j \cdot \phi\big(\rho_j^T z + b_j\big)$ and show that one can approximate every function in $C^k \left( \Omega_n; \mathbb{C}\right)$ using a function of that form with error of the order $m^{-k/(2n)}$ as $m \to \infty$, provided that the activation function $\phi: \mathbb{C} \to \mathbb{C}$ is smooth but not polyharmonic on some non-empty open set. Furthermore, we show that the selection of the weights $\sigma_j, b_j \in \mathbb{C}$ and $\rho_j \in \mathbb{C}^n$ is continuous with respect to $f$ and prove that the derived rate of approximation is optimal under this continuity assumption. We also discuss the optimality of the result for a possibly discontinuous choice of the weights.


翻译:使用浅层复值神经网络最优逼近$C^k$函数 翻译摘要: 我们证明了使用浅层复值神经网络定量逼近在复立方$\Omega_n := [-1,1]^n +i[-1,1]^n\subseteq \mathbb{C}^n$上定义的正则性 $C^k$ 函数(在实变量意义下)的结果。具体而言,我们考虑具有单个隐藏层和 $m$ 个神经元的神经网络,即形式为 $z \mapsto \sum_{j=1}^m \sigma_j \cdot \phi\big(\rho_j^T z + b_j\big)$ 的网络,并且证明了可以使用这种形式的函数对$C^k \left( \Omega_n; \mathbb{C}\right)$中的每个函数进行逼近,使得当$m \to \infty$时,误差为 $m^{-k/(2n)}$。前提条件是激活函数 $\phi: \mathbb{C} \to \mathbb{C}$ 在一些非空开集上是光滑而不是调和的。此外,我们显示了权重$\sigma_j, b_j \in \mathbb{C}$和 $\rho_j \in \mathbb{C}^n$的选择与 $f$ 相关,并证明了在这种连续性假设下得出的逼近速率是最优的。我们还讨论了在权重可能是不连续的情况下结果的最优性。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
51+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
62+阅读 · 2020年3月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员