Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position estimates. The generalisation is needed to model heterophilic connectivity (e.g., `opposites attract') and to cope with negative eigenvalues more generally. We show that, whether the adjacency or normalised Laplacian matrix is used, spectral embedding produces uniformly consistent latent position estimates with asymptotically Gaussian error (up to identifiability). The standard and mixed membership stochastic block models are special cases in which the latent positions take only $K$ distinct vector values, representing communities, or live in the $(K-1)$-simplex with those vertices, respectively. Under the stochastic block model, our theory suggests spectral clustering using a Gaussian mixture model (rather than $K$-means) and, under mixed membership, fitting the minimum volume enclosing simplex, existing recommendations previously only supported under non-negative-definite assumptions. Empirical improvements in link prediction (over the random dot product graph), and the potential to uncover richer latent structure (than posited under the standard or mixed membership stochastic block models) are demonstrated in a cyber-security example.
翻译:光谱嵌入是一个程序,可以用来获取图中节点的矢量表示。 本文建议对被称为随机点产品图的潜伏位置网络模型进行概括化, 以便将这些矢量表示解释为潜伏位置估计。 需要一般化来模拟异光客连接( 如“ opposite at' 吸引 ” ), 并更普遍地应对负电子元值。 我们显示, 是否使用对等或正常化的拉帕拉西安基质矩阵, 光谱嵌入生成统一一致的潜伏位置估计, 并带有无静脉测量误( 直至可识别性) 。 标准成员和混合成员构成区块块块模型是特殊案例, 潜伏位置仅取用$( K-1) 美元的不同矢量的矢量值, 或分别用美元( K-1美元 ) 简便与这些脊椎分别住在一起。 在随机块区块模型中, 我们的理论表明, 光谱组合组合组合组合组合组合组合组合使用高的混合物模型( 而不是$- 比例) 以及混合成员( 将最低数量假设与最低的正值、 平面的正值假设置于前的正值, 。