To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
翻译:为了确定一组图表的位置(平均值、中位数),人们需要一种适合度量空间的中心点概念,因为图形组不是欧几里德空间。一种标准的方法是考虑Frechet平均值。在这项工作中,我们用一套图形,用它们各自的相邻矩阵的光值之间的规范定义了一套图形的伪度。与编辑距离不同,这种伪度显示多个尺度的结构性变化,并且非常适合研究图形值数据的各种统计问题。我们描述一种算法,用来计算一组非定向非加权图的近似值,而该图则使用这种伪度来计算一套固定大小的非定向非加权图的样本Frechet值。