We consider the problem of embedding a dynamic network, to obtain time-evolving vector representations of each node, which can then be used to describe changes in behaviour of individual nodes, communities, or the entire graph. Given this open-ended remit, we argue that two types of stability in the spatio-temporal positioning of nodes are desirable: to assign the same position, up to noise, to nodes behaving similarly at a given time (cross-sectional stability) and a constant position, up to noise, to a single node behaving similarly across different times (longitudinal stability). Similarity in behaviour is defined formally using notions of exchangeability under a dynamic latent position network model. By showing how this model can be recast as a multilayer random dot product graph, we demonstrate that unfolded adjacency spectral embedding satisfies both stability conditions. We also show how two alternative methods, omnibus and independent spectral embedding, alternately lack one or the other form of stability.
翻译:我们考虑了嵌入动态网络的问题,以获得每个节点的时间变化矢量表达方式,然后可以用来描述单个节点、社区或整个图表的行为变化。鉴于这一开放式职权范围,我们认为,节点的时空定位有两种类型的稳定性是可取的:指定相同的位置,直至噪音,指定在特定时间相似的节点(跨区稳定)和固定的位置,直至噪音,在不同时间类似地形成一个单一节点(纵向稳定)。行为上的相似性被正式定义为在动态潜在位置网络模式下使用可互换性的概念。通过显示该模型如何被重新定位为多层随机点产品图,我们证明展出的相近光谱嵌入两种稳定条件都符合。我们还展示了两种替代方法,即总括和独立的光谱嵌入,交替缺乏一种或另一种形式的稳定性。