Recently, random walks on dynamic graphs have been studied because of their adaptivity to the time-varying structure of real-world networks. In general, there is a tremendous gap between static and dynamic graph settings for the lazy simple random walk: Although $O(n^3)$ cover time was shown for any static graphs of $n$ vertices, there is an edge-changing dynamic graph with an exponential hitting time. On the other hand, previous works indicate that the random walk on a dynamic graph with a time-homogeneous stationary distribution behaves almost identically to that on a static graph. In this paper, we strengthen this insight by obtaining general and improved bounds. Specifically, we consider a random walk according to a sequence $(P_t)_{t\geq 1}$ of irreducible and reversible transition matrices such that all $P_t$ have the same stationary distribution. We bound the mixing, hitting, and cover times in terms of the hitting and relaxation times of the random walk according to the worst fixed $P_t$. Moreover, we obtain the first bounds of the hitting and cover times of multiple random walks and the coalescing time on dynamic graphs. These bounds can be seen as an extension of the well-known bounds of random walks on static graphs. Our results generalize the previous upper bounds for specific random walks on dynamic graphs, e.g., lazy simple random walks and $d_{\max}$-lazy walks, and give improved and tight upper bounds in various cases. As an interesting consequence of our generalization, we obtain tight bounds for the lazy Metropolis walk [Nonaka, Ono, Sadakane, and Yamashita, TCS10] on any dynamic graph: $O(n^2)$ mixing time, $O(n^2)$ hitting time, and $O(n^2\log n)$ cover time. Additionally, our coalescing time bound implies the consensus time bound of the pull voting on a dynamic graph.
翻译:最近,对动态图的随机行走进行了研究,原因是它们适应了真实世界网络的时间变化结构。 一般来说, 懒惰的简单随机行走时, 静态和动态图形设置之间存在巨大的差距: 虽然为任何静态的高额图表显示的是$( n%3) 3美元覆盖时间, 任何静态的高额图显示的是边缘变化的动态图, 有指数性打击时间分布。 另一方面, 先前的作品显示, 动态图上随机行走的时间与真实世界网络的时间变化结构的规律结构几乎完全相同。 在本文中, 我们通过获取普通的平面和亮面的界限来强化这种洞察视。 我们考虑随机行走的顺序是$( P_ t_ t_ t\ t\ t\ g g ) 1}, 任何不可移动和可逆转的转变矩阵矩阵, 所有的美元都具有相同的稳定分布。 我们按最坏的平面平面平面的平面行走的时段、 平面的平面、 平面的平面的平面的平面、 直行、 直面的平面的平面的平面、 直行、 直行、 直行、 直面的平面的平面、 直面的平面的平面的平面的平面的平面的平面的平面的。