To further improve the learning efficiency and performance of reinforcement learning (RL), in this paper we propose a novel uncertainty-aware model-based RL (UA-MBRL) framework, and then implement and validate it in autonomous driving under various task scenarios. First, an action-conditioned ensemble model with the ability of uncertainty assessment is established as the virtual environment model. Then, a novel uncertainty-aware model-based RL framework is developed based on the adaptive truncation approach, providing virtual interactions between the agent and environment model, and improving RL's training efficiency and performance. The developed algorithms are then implemented in end-to-end autonomous vehicle control tasks, validated and compared with state-of-the-art methods under various driving scenarios. The validation results suggest that the proposed UA-MBRL method surpasses the existing model-based and model-free RL approaches, in terms of learning efficiency and achieved performance. The results also demonstrate the good ability of the proposed method with respect to the adaptiveness and robustness, under various autonomous driving scenarios.
翻译:为了进一步提高强化学习的学习效率和绩效,本文件提出一个新的基于不确定性的模型RL(UA-MBRL)框架,然后在各种任务情景下自主驱动实施和验证这一框架。首先,将具有不确定性评估能力的具有行动条件的混合模型确立为虚拟环境模型。然后,根据适应性脱轨办法,开发了一个基于不确定性的模型RL框架,在代理和环境模型之间提供虚拟互动,并提高RL的培训效率和绩效。然后,在终端至终端的自动车辆控制任务中实施开发的算法,在各种驱动情景下,经过验证并与最先进的方法进行比较。验证结果表明,拟议的UA-MBRL方法在学习效率和绩效方面超过了现有的基于模型和无模式的RL方法。结果还表明,在各种自主驱动情景下,拟议的方法在适应性和稳健性方面具有良好能力。