There is a recently discovered and intriguing phenomenon called Neural Collapse: at the terminal phase of training a deep neural network for classification, the within-class penultimate feature means and the associated classifier vectors of all flat classes collapse to the vertices of a simplex Equiangular Tight Frame (ETF). Recent work has tried to exploit this phenomenon by fixing the related classifier weights to a pre-computed ETF to induce neural collapse and maximize the separation of the learned features when training with imbalanced data. In this work, we propose to fix the linear classifier of a deep neural network to a Hierarchy-Aware Frame (HAFrame), instead of an ETF, and use a cosine similarity-based auxiliary loss to learn hierarchy-aware penultimate features that collapse to the HAFrame. We demonstrate that our approach reduces the mistake severity of the model's predictions while maintaining its top-1 accuracy on several datasets of varying scales with hierarchies of heights ranging from 3 to 12. We will release our code on GitHub in the near future.
翻译:最近发现的一种令人感兴趣的现象叫做神经折叠:在训练深神经网络进行分类的最后阶段,阶级内倒数第二特征手段和所有平板舱的相联分类矢量都倒向简单xEquiacorn光框架(ETF)的脊椎。最近的工作试图利用这个现象,将相关的分类器重量固定在一个预先计算过的 ETF 上,以诱发神经崩溃,并在训练时尽量将学到的特性与不平衡的数据分开。在这项工作中,我们提议将深神经网的线性分类器改为一个等级-软件框架(HAFFrame),而不是一个EFTF,并使用基于类似性线的辅助损失来学习崩溃到HAFrame的等级-认知侧侧形特征。我们证明我们的方法可以减少模型预测的错误严重性,同时保持若干不同等级的、高度为3至12的数据集的上层的准确度。我们将在近期释放Gihubib 的代码。</s>