In this paper, we establish novel deviation bounds for additive functionals of geometrically ergodic Markov chains similar to Rosenthal and Bernstein-type inequalities for sums of independent random variables. We pay special attention to the dependence of our bounds on the mixing time of the corresponding chain. Our proof technique is, as far as we know, new and based on the recurrent application of the Poisson decomposition. We relate the constants appearing in our moment bounds to the constants from the martingale version of the Rosenthal inequality and show an explicit dependence on the parameters of the underlying Markov kernel.
翻译:在本文中,我们为与罗森塔尔和伯恩斯坦式的不平等等同的马可夫链的几何方位元元体的添加性功能建立了新的偏差界限。我们特别关注我们对相应链条混合时间的界限的依赖性。据我们所知,我们的证据技术是新型的,以普瓦松分解的反复应用为基础。我们将我们时空出现的常数与罗森塔尔不平等的马廷格尔版的常数联系起来,并表明明确依赖马可夫内核的参数。</s>