One-bit compressed sensing (1bCS) is an extreme-quantized signal acquisition method that has been widely studied in the past decade. In 1bCS, linear samples of a high dimensional signal are quantized to only one bit per sample (sign of the measurement). Assuming the original signal vector to be sparse, existing results either aim to find the support of the vector, or approximate the signal within an $\epsilon$-ball. The focus of this paper is support recovery, which often also computationally facilitates approximate signal recovery. A universal measurement matrix for 1bCS refers to one set of measurements that work for all sparse signals. With universality, it is known that $\tilde{\Theta}(k^2)$ 1bCS measurements are necessary and sufficient for support recovery (where $k$ denotes the sparsity). In this work, we show that it is possible to universally recover the support with a small number of false positives with $\tilde{O}(k^{3/2})$ measurements. If the dynamic range of the signal vector is known, then with a different technique, this result can be improved to only $\tilde{O}(k)$ measurements. Further results on support recovery are also provided.


翻译:1BCS中,高维信号的线性样本被量化为每个样本只有一位数(表示测量量)。假设最初的信号矢量是稀疏的,现有结果或者旨在找到矢量的支持,或者接近以美元计球内的信号。本文的重点是支持恢复,而这往往也计算出接近信号恢复。1BCS的通用测量矩阵是指为所有稀有信号工作而使用的一套测量方法。在普遍性方面,已知 $\tilde\theta}(k ⁇ 2)$ 1BCS 的测量方法对于支持恢复是必要和足够的(美元表示偏差)。在这项工作中,我们表明,如果知道信号矢量的动态范围,然后以不同的技术支持,那么这一结果也只能改进到$\tilde{O}。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
专知会员服务
79+阅读 · 2020年10月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
9+阅读 · 2021年3月8日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
VIP会员
相关资讯
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员