In this article, we present the bivariate and multivariate functional Moran's I statistics and multivariate functional areal spatial principal component analysis (mfasPCA). These methods are the first of their kind in the field of multivariate areal spatial functional data analysis. The multivariate functional Moran's I statistic is employed to assess spatial autocorrelation, while mfasPCA is utilized for dimension reduction in both univariate and multivariate functional areal data. Through simulation studies and real-world examples, we demonstrate that the multivariate functional Moran's I statistic and mfasPCA are powerful tools for evaluating spatial autocorrelation in univariate and multivariate functional areal data analysis.
翻译:暂无翻译