Although variational autoencoders (VAE) are successfully used to obtain meaningful low-dimensional representations for high-dimensional data, the characterization of critical points of the loss function for general observation models is not fully understood. We introduce a theoretical framework that is based on a connection between $\beta$-VAE and generalized linear models (GLM). The equality between the activation function of a $\beta$-VAE and the inverse of the link function of a GLM enables us to provide a systematic generalization of the loss analysis for $\beta$-VAE based on the assumption that the observation model distribution belongs to an exponential dispersion family (EDF). As a result, we can initialize $\beta$-VAE nets by maximum likelihood estimates (MLE) that enhance the training performance on both synthetic and real world data sets. As a further consequence, we analytically describe the auto-pruning property inherent in the $\beta$-VAE objective and reason for posterior collapse.
翻译:虽然成功地利用变式自动电解码器(VAE)对高维数据进行有意义的低维表示,但对于一般观测模型损失函数关键点的定性并没有充分理解,我们引入了一个理论框架,其依据是美元和通用线性模型(GLM)之间的联系。一个元和元的自动电解码机的激活功能与一个GLM的连接功能之间的平等,使我们能够根据观测模型分布属于指数分散式组(EDF)的假设,对美元和元的VAE的损失分析进行系统化的概括化。结果,我们可以通过最大可能性估计(MLE)初始化美元和元的VAE网,提高合成和真实世界数据集的培训性。作为进一步的结果,我们用分析的方式描述了$和元元的VAE目标和事后崩溃的原因所固有的自动操纵属性。