In this paper, we present a high-order finite element method based on a reconstructed approximation to the biharmonic equation. In our construction, the space is reconstructed from nodal values by solving a local least squares fitting problem per element. It is shown that the space can achieve an arbitrarily high-order accuracy and share the same nodal degrees of freedom with the $C^0$ linear space. The interior penalty discontinuous Galerkin scheme can be directly applied to the reconstructed space for solving the biharmonic equation. We prove that the numerical solution converges with optimal orders under error measurements. More importantly, we establish a norm equivalence between the reconstructed space and the continuous linear space. This property allows us to precondition the linear system arising from the high-order space by the linear space on the same mesh. This preconditioner is shown to be optimal in the sense that the condition number of the preconditioned system admits a uniform upper bound independent of the mesh size. Numerical examples in two and three dimensions are provided to illustrate the accuracy of the scheme and the efficiency of the preconditioning method.
翻译:暂无翻译