The Landau-Lifshitz-Gilbert (LLG) equation is a widely used model for fast magnetization dynamics in ferromagnetic materials. Recently, the inertial LLG equation, which contains an inertial term, has been proposed to capture the ultra-fast magnetization dynamics at the sub-picosecond timescale. Mathematically, this generalized model contains the first temporal derivative and a newly introduced second temporal derivative of magnetization. Consequently, it produces extra difficulties in numerical analysis due to the mixed hyperbolic-parabolic type of this equation with degeneracy. In this work, we propose an implicit finite difference scheme based on the central difference in both time and space. A fixed point iteration method is applied to solve the implicit nonlinear system. With the help of a second order accurate constructed solution, we provide a convergence analysis in $H^1$ for this numerical scheme, in the $\ell^\infty (0, T; H_h^1)$ norm. It is shown that the proposed method is second order accurate in both time and space, with unconditional stability and a natural preservation of the magnetization length. In the hyperbolic regime, significant damping wave behaviors of magnetization at a shorter timescale are observed through numerical simulations.


翻译:Landau-Lifshitz- Gilbert (LLG) 方程式是铁磁材料快速磁化动力的一种广泛使用的模型。 最近, 惯性LLG 方程式( 包含惯性术语) 提议在亚对地第二个时间尺度上捕捉超快磁化动力。 从数学角度讲, 这一通用模型包含第一个时间衍生物, 以及新引入的第二个时间衍生物。 因此, 由于该方程式的双双曲- 单曲类型与分解性混合, 它在数字分析中造成了额外的困难。 在这项工作中, 我们提议基于时间和空间中心差异的隐含有限差异方案。 一种固定点的代用法用于解决隐含的非线性系统。 在第二个精确的构造解决方案的帮助下, 我们用美元/ ellinfty ( 0, T; H_h ⁇ 1) 标准, 为该数字公式提供了以1美元表示的趋同值分析。 因此, 拟议的方法在时间和空间上都是第二顺序的精确度, 并且以无条件的稳定性和在磁磁化的自然保存时间缩缩缩度中, 。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年10月20日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员