We propose to perform self-supervised disentanglement of depth and camera pose from large-scale videos. We introduce an Autoencoder-based method to reconstruct the input video frames for training, without using any ground-truth annotations of depth and camera. The model encoders estimate the monocular depth and the camera pose. The decoder then constructs a Multiplane NeRF representation based on the depth encoder feature, and renders the input frames with the estimated camera. The learning is supervised by the reconstruction error, based on the assumption that the scene structure does not change in short periods of time in videos. Once the model is learned, it can be applied to multiple applications including depth estimation, camera pose estimation, and single image novel view synthesis. We show substantial improvements over previous self-supervised approaches on all tasks and even better results than counterparts trained with camera ground-truths in some applications. Our code will be made publicly available. Our project page is: https://oasisyang.github.io/self-mpinerf .


翻译:我们建议进行自我监督的深度分解和大型视频的摄像布局。 我们采用基于自动编码器的方法来重建输入的视频框架用于培训, 而不使用任何地面深度和摄像头的真相说明。 模型编码器估计单眼深度和相机布局。 然后, 解码器根据深度编码器特性构造一个多平板 NERF 代表器, 并用估计的相机提供输入框架。 学习由重建错误来监督, 假设现场结构不会在短期内在视频中发生变化。 一旦模型被学习, 就可以应用于多个应用程序, 包括深度估计、 相机显示和单一图像新视图合成。 我们展示了以前对所有任务采取的自我监督方法的重大改进, 甚至比在某些应用程序中接受过地面摄像仪训练的对应方要好。 我们的代码将被公开。 我们的项目网页是 https://oasisyang.github.io/self- mpinerf 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员