Recently, model-agnostic meta-learning (MAML) has garnered tremendous attention. However, stochastic optimization of MAML is still immature. Existing algorithms for MAML are based on the ``episode" idea by sampling a number of tasks and a number of data points for each sampled task at each iteration for updating the meta-model. However, they either do not necessarily guarantee convergence with a constant mini-batch size or require processing a larger number of tasks at every iteration, which is not viable for continual learning or cross-device federated learning where only a small number of tasks are available per-iteration or per-round. This paper addresses these issues by (i) proposing efficient memory-based stochastic algorithms for MAML with a diminishing convergence error, which only requires sampling a constant number of tasks and a constant number of examples per-task per-iteration; (ii) proposing communication-efficient distributed memory-based MAML algorithms for personalized federated learning in both the cross-device (w/ client sampling) and the cross-silo (w/o client sampling) settings. The key novelty of the proposed algorithms is to maintain an individual personalized model (aka memory) for each task besides the meta-model and only update them for the sampled tasks by a momentum method that incorporates historical updates at each iteration. The theoretical results significantly improve the optimization theory for MAML and the empirical results also corroborate the theory.


翻译:最近,模型-不可知元学习(MAML)引起了极大的注意,然而,MAML的随机优化仍然不成熟。MAML的现有算法基于“episode”的“episode”理念,在更新元模型的每次迭代中抽样任务和每个抽样任务的若干数据点进行抽样抽样,但是,这些算法不一定保证与固定的微型批量尺寸趋同,或要求在每一次迭代中处理更多的任务,而每次迭代都无法持续学习或交叉调整,因为只要有少量的每项任务,MAMML的现有算法就以“episode”概念为基础,方法是:(一) 为MAMLM提出高效的基于记忆的随机算法,同时减少趋同错误,这就要求对固定的任务数进行抽样,并按每个固定的每次迭代数逐次处理; (二) 提出通信效率分布的基于记忆的MAMLLL算法,用于在跨迭代(w/客户抽样抽样)和跨级联校学习,只要有少量任务,就可提供少量的学习。

0
下载
关闭预览

相关内容

MAML(Model-Agnostic Meta-Learning)是元学习(Meta learning)最经典的几个算法之一,出自论文《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》。 原文地址:https://arxiv.org/abs/1703.03400
专知会员服务
45+阅读 · 2020年10月22日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
14+阅读 · 2019年9月11日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员