目前流行的图学习方法需要丰富的标签和边信息进行学习。「当新任务的数据稀缺时,元学习允许我们从以前的经验中学习」,并形成急需的归纳偏见,以便快速适应新任务。
此文介绍了「G-META,一种新的图的元学习方法:」
G-META 使用局部子图传递特定于子图的信息,并通过元梯度使模型更快地学习基本知识。 G-META 学习如何仅使用新任务中的少数节点或边来快速适应新任务,并通过学习其他图或相关图(尽管是不相交的标签集)中的数据点来做到这一点。 G-META 在理论上是合理的,因为「特定预测的证据可以在目标节点或边周围的局部子图中找到。」
现有方法是专门为特定的图元学习问题和特定的任务设计的专门技术。虽然这些方法为 GNN 中的元学习提供了一种很有前途的方法,但它们的特定策略没有很好的伸缩性,也不能扩展到其他图的元学习问题(图1)。