Accurate models of clinical actions and their impacts on disease progression are critical for estimating personalized optimal dynamic treatment regimes (DTRs) in medical/health research, especially in managing chronic conditions. Traditional statistical methods for DTRs usually focus on estimating the optimal treatment or dosage at each given medical intervention, but overlook the important question of "when this intervention should happen." We fill this gap by developing a two-step Bayesian approach to optimize clinical decisions with timing. In the first step, we build a generative model for a sequence of medical interventions-which are discrete events in continuous time-with a marked temporal point process (MTPP) where the mark is the assigned treatment or dosage. Then this clinical action model is embedded into a Bayesian joint framework where the other components model clinical observations including longitudinal medical measurements and time-to-event data conditional on treatment histories. In the second step, we propose a policy gradient method to learn the personalized optimal clinical decision that maximizes the patient survival by interacting the MTPP with the model on clinical observations while accounting for uncertainties in clinical observations learned from the posterior inference of the Bayesian joint model in the first step. A signature application of the proposed approach is to schedule follow-up visitations and assign a dosage at each visitation for patients after kidney transplantation. We evaluate our approach with comparison to alternative methods on both simulated and real-world datasets. In our experiments, the personalized decisions made by the proposed method are clinically useful: they are interpretable and successfully help improve patient survival.
翻译:准确的临床行动模型及其对疾病蔓延的影响对于估计医学/健康研究中个人化的最佳动态治疗机制(DTRs)在医疗/健康研究中,特别是在管理慢性病症方面,至关重要。DTRs的传统统计方法通常侧重于估计每种特定医疗干预的最佳治疗或剂量,但忽视了重要的“何时应该采取这一干预措施”问题。我们通过制定两步贝叶斯式的方法,优化临床决策,在时间安排上优化临床决策,弥补这一差距。在第一步,我们为一系列医疗干预措施建立了一种归结模型,这是在持续的时间里,有明显的时间点(MTPPP),其标志是指定的治疗或剂量。然后,DTRs的传统统计方法通常侧重于估算每种特定医疗干预措施的最佳治疗或剂量,但忽略了“何时进行这种干预”这一重要问题。 在第二个步骤中,我们提出了一种政策梯度方法,以学习个人化的最佳临床决策,通过将病人生存能力与临床观察模型进行互动,同时计算临床观察的不确定性,从事后个人观察点中得出的是指定治疗或剂量。然后将临床行动模式在每次测试后进行。我们提出的对巴伊斯的模拟访问的拟议的模型和测测测测算中,这是一次模拟测测测测测测测测测测期后的拟议的模型和测测算。我们提出的一个模拟测算。我们提议的模拟测测算。我们提议的模拟测测测测测测测测测测测期的模型的模型的模型和测期中,这是一次的模型和测算方法。