This paper studies a general class of stochastic population processes in which agents interact with one another over a network. Agents update their behaviors in a random and decentralized manner based only on their current state and the states of their neighbors. It is well known that when the number of agents is large and the network is a complete graph (has all-to-all information access), the macroscopic behavior of the population converges to a differential equation called a {\it mean-field approximation}. When the network is not complete, it is unclear in general whether there exists a suitable mean-field approximation for the macroscopic behavior of the population. This paper provides general conditions on the network and policy dynamics for which a suitable mean-field approximation exists. First, we show that as long as the network is well-connected, the macroscopic behavior of the population concentrates around the {\it same} mean-field system as the complete-graph case. Next, we show that as long as the network is sufficiently dense, the macroscopic behavior of the population concentrates around a mean-field system that is, in general, {\it different} from the mean-field system obtained in the complete-graph case. Finally, we provide conditions under which the mean-field approximation is equivalent to the one obtained in the complete-graph case.


翻译:本文研究一个总体类的随机人口过程, 使代理商在网络上相互互动。 代理商仅根据他们目前的状况和邻居的状态, 以随机和分散的方式更新他们的行为。 众所周知, 当代理商的数量巨大, 网络是一个完整的图表( 拥有全到全部的信息访问) 时, 人口宏观行为会与一个叫做“ 平均场近似” 的差别方程式相融合。 当网络不完善时, 一般说来还不清楚是否有适合人口宏观行为的平均场近似。 本文以随机和分散的方式更新了他们的行为。 这份代理商提供了网络和政策动态的一般条件, 并且存在一个合适的平均场近似的情况。 首先, 我们显示只要网络是庞大的, 人口宏观行为与整个平均场系统一样。 我们显示只要网络足够稠密, 人口集中的宏观表面行为方式围绕一个完整的平均场系统, 就能提供我们从中获取的中等值的数据。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
41+阅读 · 2021年4月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员