Order statistics arising from $m$ independent but not identically distributed random variables are typically constructed by arranging some $X_{1}, X_{2}, \ldots, X_{m}$, with $X_{i}$ having distribution function $F_{i}(x)$, in increasing order denoted as $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(m)}$. In this case, $X_{(i)}$ is not necessarily associated with $F_{i}(x)$. Assuming one can simulate values from each distribution, one can generate such "non-iid" order statistics by simulating $X_{i}$ from $F_{i}$, for $i=1,2,\ldots, m$, and arranging them in order. In this paper, we consider the problem of simulating ordered values $X_{(1)}, X_{(2)}, \ldots, X_{(m)}$ such that the marginal distribution of $X_{(i)}$ is $F_{i}(x)$. This problem arises in Bayesian principal components analysis (BPCA) where the $X_{i}$ are ordered eigenvalues that are a posteriori independent but not identically distributed. We propose a novel coupling-from-the-past algorithm to "perfectly" (up to computable order of accuracy) simulate such {\emph{order-constrained non-iid}} order statistics. We demonstrate the effectiveness of our approach for several examples, including the BPCA problem.
翻译:独立但分布不完全的随机变量产生的顺序统计通常通过以下方式构建: 设置一些 $X{%1}, X}2},\ ldots, X ⁇ m}美元, 美元X ⁇ i}, 美元有分配功能$F ⁇ i}(x)美元, 美元=1, 2,\q X ⁇ (2)} \leq\ldots\leq X ⁇ (m)} 。 在此情况下, 美元X ⁇ (i)} 美元不一定与 ${i} (x) 美元有关。 假设一个可以模拟每个发行的值, 美元X ⁇ (ld) 美元可以生成这样的“ 非二” 命令统计, 美元=1, 2,\ldots, m$, 并按顺序排列。 在本文中, 我们考虑的是 将订购值 $X ⁇ (i) 和 complia} (m) 美元(i) 的边端分配顺序问题, 而不是从 美元(i) a_x max 分析。