We investigate a machine learning approach to option Greeks approximation based on Gaussian process (GP) surrogates. The method takes in noisily observed option prices, fits a nonparametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Our motivation is to compute Greeks in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We further discuss the application to Delta hedging, including a new Lemma that relates quality of the Delta approximation to discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matern kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.
翻译:我们根据Gaussian过程的代孕方法,对希腊近似选项的机算学习方法进行调查。该方法以隐喻观察的选项价格取而代之,符合非参数输入输出图,然后在分析上区分后者,以获得各种价格敏感性。我们的动机是计算直接计算成本昂贵的希腊人,如当地波动模型,或只能做大致的计算。我们详细分析GP代孕的诸多方面,包括内核家庭的选择、模拟设计、趋势功能的选择和噪音的影响。我们进一步讨论对Delta套期的应用,包括一个新的Lemma,将Delta近似质量与离散时间套期套期保值损失联系起来。结果通过两个广泛的案例研究加以说明,这些案例研究考虑对Delta、Theta和Gamma的估计,以及使用各种统计指标基准近似质量和不确定性的量化。我们的主要取之道是建议使用Matern内核,包括虚拟培训点以捕捉边界条件的好处,以及在进行基于储存的数据集培训时对忠诚性的重大损失。