In this paper, we propose a new trace finite element method for the {Laplace-Beltrami} eigenvalue problem. The method is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. A comprehensive analysis for the method is provided. We show that the eigenvalues of the discrete Laplace-Beltrami operator coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in {\it Hochstenbach et al. SIAM J. Matrix Anal. Appl., 2019} \cite{hochstenbach2019solving}. We prove the method has optimal convergence rate. Numerical experiments verify the theoretical analysis and show that the geometric consistency can improve the numerical accuracy significantly.
翻译:在本文中, 我们为 { Laplace- Beltrami} egenvaly 问题提出了一个新的微量元素方法。 该方法直接针对平滑的方块提出, 平滑的元件由水平设置函数暗含, 并需要在表面进行高排序的数值方块。 提供了该方法的全面分析 。 我们显示, Laplace- Beltrami 离散操作器的精度值与嵌入问题的精度值仅相符合, 与奇特通用代数值值问题的精度值相匹配。 限的精度电子元值可以通过Homshtenbach 和 SIAM J. Matrig Anal. Appl., 2019} 来有效解决。 我们证明该方法具有最佳的趋同率。 Numerical 实验验证了理论分析, 并显示几何一致性可以显著提高数字准确性。