Multi-fidelity modeling and calibration are data fusion tasks that ubiquitously arise in engineering design. In this paper, we introduce a novel approach based on latent-map Gaussian processes (LMGPs) that enables efficient and accurate data fusion. In our approach, we convert data fusion into a latent space learning problem where the relations among different data sources are automatically learned. This conversion endows our approach with attractive advantages such as increased accuracy, reduced costs, flexibility to jointly fuse any number of data sources, and ability to visualize correlations between data sources. This visualization allows the user to detect model form errors or determine the optimum strategy for high-fidelity emulation by fitting LMGP only to the subset of the data sources that are well-correlated. We also develop a new kernel function that enables LMGPs to not only build a probabilistic multi-fidelity surrogate but also estimate calibration parameters with high accuracy and consistency. The implementation and use of our approach are considerably simpler and less prone to numerical issues compared to existing technologies. We demonstrate the benefits of LMGP-based data fusion by comparing its performance against competing methods on a wide range of examples.
翻译:多纤维建模和校准是工程设计中普遍产生的数据聚合任务。在本文中,我们引入了基于潜型地图高斯进程(LMGPs)的新颖方法,使数据融合能够高效和准确的数据聚合。在我们的方法中,我们将数据融合转化为潜在的空间学习问题,从而自动了解不同数据源之间的关系。这种转换使我们的方法具有吸引人的优势,如提高准确性、降低成本、使数据源的任何数量能够联合起来的灵活性,以及使数据源之间的相关性具有可视化的能力。这种可视化使用户能够探测模型形式错误或确定高纤维化模拟的最佳战略,仅将LMGP与与与数据源的子集相匹配。我们还开发了新的内核功能,使LMGPs不仅能够建立概率性多纤维代金,而且能够以高准确性和一致性的方式估计校准参数。我们方法的实施和使用比现有技术要简单得多,而且不易于数字问题。我们通过比较基于LMGP的数据聚合方法的广泛性能比比。我们用LMGP的模型来比较其范围。