Recently, autonomous vehicles and those equipped with an Advanced Driver Assistance System (ADAS) are emerging. They share the road with regular ones operated by human drivers entirely. To ensure guaranteed safety for passengers and other road users, it becomes essential for autonomous vehicles and ADAS to anticipate traffic accidents from natural driving scenes. The dynamic spatial-temporal interaction of the traffic agents is complex, and visual cues for predicting a future accident are embedded deeply in dashcam video data. Therefore, early anticipation of traffic accidents remains a challenge. To this end, the paper presents a dynamic spatial-temporal attention (DSTA) network for early anticipation of traffic accidents from dashcam videos. The proposed DSTA-network learns to select discriminative temporal segments of a video sequence with a module named Dynamic Temporal Attention (DTA). It also learns to focus on the informative spatial regions of frames with another module named Dynamic Spatial Attention (DSA). The spatial-temporal relational features of accidents, along with scene appearance features, are learned jointly with a Gated Recurrent Unit (GRU) network. The experimental evaluation of the DSTA-network on two benchmark datasets confirms that it has exceeded the state-of-the-art performance. A thorough ablation study evaluates the contributions of individual components of the DSTA-network, revealing how the network achieves such performance. Furthermore, this paper proposes a new strategy that fuses the prediction scores from two complementary models and verifies its effectiveness in further boosting the performance of early accident anticipation.


翻译:最近,自治车辆和配备高级司机协助系统(ADAS)的车辆正在出现,它们与由人类驾驶员完全经营的正常车辆共用道路。为确保乘客和其他道路使用者的安全,自主车辆和ADAS必须从自然驾驶场预测交通事故。交通代理的动态空间-时空互动十分复杂,预测未来事故的视觉提示深深嵌入了破摄像机视频数据中。因此,对交通事故的早期预测仍是一项挑战。为此,本文件展示了一个动态空间时空关注网络,以便从破摄像头视频中及早预测交通事故。拟议的DSTA网络学会从一个名为动态时钟注意(DTA)的模块中选择一段有区别的视频时间段来预测交通事故。还学习了以另一个名为动态空间注意(DSA)的模块来提供信息的空间区域。 事故的空间-时空关系特征以及场景特征,与Greded 常规股(GRU)网络一起学习。对DSTA网络在两个数据库的早期预测性能表现进行实验性评估,这两份数据库的预估性业绩评估都超过了DRISTA的预估。

1
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【AAAI2021】Graph Diffusion Network提升交通流量预测精度
专知会员服务
54+阅读 · 2021年1月21日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
已删除
将门创投
5+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
【AAAI2021】Graph Diffusion Network提升交通流量预测精度
专知会员服务
54+阅读 · 2021年1月21日
Top
微信扫码咨询专知VIP会员