A new scheme is presented for imposing periodic boundary conditions on unit cells with arbitrary source distributions. We restrict our attention here to the Poisson, modified Helmholtz, Stokes and modified Stokes equations. The approach extends to the oscillatory equations of mathematical physics, including the Helmholtz and Maxwell equations, but we will address these in a companion paper, since the nature of the problem is somewhat different and includes the consideration of quasiperiodic boundary conditions and resonances. Unlike lattice sum-based methods, the scheme is insensitive to the unit cell's aspect ratio and is easily coupled to adaptive fast multipole methods (FMMs). Our analysis relies on classical "plane-wave" representations of the fundamental solution, and yields an explicit low-rank representation of the field due to all image sources beyond the first layer of neighboring unit cells. When the aspect ratio of the unit cell is large, our scheme can be coupled with the nonuniform fast Fourier transform (NUFFT) to accelerate the evaluation of the induced field. Its performance is illustrated with several numerial examples.


翻译:我们在此只关注Poisson、经修改的Helmholtz、Stokes和经修改的Stokes等方程式。我们的分析延伸至数学物理的血管方程式,包括Helmholtz和Maxwell等方程式,但我们将在一份配套文件中讨论这些问题,因为问题的性质有些不同,包括考虑半周期的边界条件和共鸣。与基于 lattice和基于总和的方法不同,这个方法对单元细胞的侧面比率不敏感,容易与适应性快速多极方法(FMMs)相结合。我们的分析依赖于基本解决方案的经典“平流”表达方式,并产生明显低层次的字段代表度,由于离相邻单元细胞第一层以外的所有图像源。当该单元的方位比例较大时,我们的计划可以与非统一快速Fourier变换(UFFT)相结合,以加速对引出场的评价。我们的分析用几个数字示例说明其表现。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年5月25日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员