NeuroNet is a deep convolutional neural network mimicking multiple popular and state-of-the-art brain segmentation tools including FSL, SPM, and MALPEM. The network is trained on 5,000 T1-weighted brain MRI scans from the UK Biobank Imaging Study that have been automatically segmented into brain tissue and cortical and sub-cortical structures using the standard neuroimaging pipelines. Training a single model from these complementary and partially overlapping label maps yields a new powerful "all-in-one", multi-output segmentation tool. The processing time for a single subject is reduced by an order of magnitude compared to running each individual software package. We demonstrate very good reproducibility of the original outputs while increasing robustness to variations in the input data. We believe NeuroNet could be an important tool in large-scale population imaging studies and serve as a new standard in neuroscience by reducing the risk of introducing bias when choosing a specific software package.
翻译:NeuroNet是一个深层的进化神经网络,它模仿多种流行和最先进的脑分解工具,包括FSL、SPM和MALPEM。该网络接受英国生物银行成像研究5 000 T1加权脑MRI扫描的培训,这些扫描已自动分解成脑组织以及使用标准的神经成像管道的皮层和亚层结构。从这些互补和部分重叠的标签图中培训一个单一模型,产生一个新的强大的“一对一”、多输出分解工具。单个对象的处理时间比每个软件包的运行时间减少一个数量级。我们展示了原始产出的极好再生性,同时增加了输入数据变化的强性。我们认为NeuroNet可以成为大规模人口成像研究的一个重要工具,并成为神经科学的新标准,通过减少在选择特定软件包时引入偏见的风险。