A landmark result of non-smooth convex optimization is that gradient descent is an optimal algorithm whenever the number of computed gradients is smaller than the dimension $d$. In this paper we study the extension of this result to the parallel optimization setting. Namely we consider optimization algorithms interacting with a highly parallel gradient oracle, that is one that can answer $\mathrm{poly}(d)$ gradient queries in parallel. We show that in this case gradient descent is optimal only up to $\tilde{O}(\sqrt{d})$ rounds of interactions with the oracle. The lower bound improves upon a decades old construction by Nemirovski which proves optimality only up to $d^{1/3}$ rounds (as recently observed by Balkanski and Singer), and the suboptimality of gradient descent after $\sqrt{d}$ rounds was already observed by Duchi, Bartlett and Wainwright. In the latter regime we propose a new method with improved complexity, which we conjecture to be optimal. The analysis of this new method is based upon a generalized version of the recent results on optimal acceleration for highly smooth convex optimization.
翻译:非moothm{poly}(d) 梯度优化的一个里程碑式结果是, 当计算梯度的数量小于维度时, 梯度下降是一种最佳算法。 在本文中, 我们研究将这一结果延伸至平行优化设置。 也就是说, 我们考虑优化算法与高度平行的梯度符号互动, 这是一种可以同时回答 $\ mathrm{poly}( d) $ 梯度查询的方法。 我们显示, 在此情况下, 梯度下移仅是最佳的, 最高为$\ tilde{O} (\ sqrt{d}) 美元 。 在后一种制度下, 我们建议一种更复杂的新方法, 我们推测这是最佳的。 对这一新方法的分析基于一个普遍版本的当前最佳加速性结果。