We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends non-trivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback--Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology.
翻译:我们为巴伊西亚非线性前方操作员、非古日元前端操作员和非古日元观测噪音的反向问题建议一个维度减少技术。 概率函数被脊柱函数所近似, 也就是说, 地图仅非三维地依赖参数的若干线性组合。 我们通过最小化后背分布与近似之间的Kullback- Leeper差的上限来构建这种脊脊近似值。 通过对数法Sobolev的不平等, 将这种差数捆绑起来, 允许一个人验证后向近似值的错误。 计算约束需要计算日志类函数的梯度的第二个瞬间矩阵。 在实践中, 需要基于样本的上界的近似值。 我们提供一种分析, 以便能够控制由于这一取样而导致的远端近似差。 与现有方法的数值和理论比较表明拟议方法的好处。