We study asynchronous finite sum minimization in a distributed-data setting with a central parameter server. While asynchrony is well understood in parallel settings where the data is accessible by all machines -- e.g., modifications of variance-reduced gradient algorithms like SAGA work well -- little is known for the distributed-data setting. We develop an algorithm ADSAGA based on SAGA for the distributed-data setting, in which the data is partitioned between many machines. We show that with $m$ machines, under a natural stochastic delay model with an mean delay of $m$, ADSAGA converges in $\tilde{O}\left(\left(n + \sqrt{m}\kappa\right)\log(1/\epsilon)\right)$ iterations, where $n$ is the number of component functions, and $\kappa$ is a condition number. This complexity sits squarely between the complexity $\tilde{O}\left(\left(n + \kappa\right)\log(1/\epsilon)\right)$ of SAGA \textit{without delays} and the complexity $\tilde{O}\left(\left(n + m\kappa\right)\log(1/\epsilon)\right)$ of parallel asynchronous algorithms where the delays are \textit{arbitrary} (but bounded by $O(m)$), and the data is accessible by all. Existing asynchronous algorithms with distributed-data setting and arbitrary delays have only been shown to converge in $\tilde{O}(n^2\kappa\log(1/\epsilon))$ iterations. We empirically compare on least-squares problems the iteration complexity and wallclock performance of ADSAGA to existing parallel and distributed algorithms, including synchronous minibatch algorithms. Our results demonstrate the wallclock advantage of variance-reduced asynchronous approaches over SGD or synchronous approaches.


翻译:在分布式数据设置中,我们用一个中央参数服务器来研究是否在分布式数据设置中将数据限制到最小值 。虽然在平行设置中,所有机器都可以访问到数据,例如,修改差异降梯度算法(如SAGA工作良好),但在分布式数据设置中却鲜为人知。我们开发了一个基于SAGA的分布式数据设置的ADSAGA算法,其中数据在多个机器之间分配。我们显示,如果使用美元(美元)的机器,在可读性延迟模型下,以美元为平均值,ADSAGA在 $(n) liverdealde;Oleft (n)\\\\ tright{Oright} daldical-rickrickrickrlickrick} 中,美元是美元数数是元数数,而$(kaptappal-rickr=x) 和Sal-ral-ral-ral-rent-ral-ral-ral-ral-sal-smas disal-s disl) 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员