案例 | lightgbm算法优化-不平衡二分类问题(附代码)

2018 年 3 月 11 日 大数据文摘 苏高生

大数据文摘投稿作品

投稿作者苏高生


本案例使用的数据为kaggle中“Santander Customer Satisfaction”比赛的数据。此案例为不平衡二分类问题,目标为最大化auc值(ROC曲线下方面积)。目前此比赛已经结束。


竞赛题目链接为:

https://www.kaggle.com/c/santander-customer-satisfaction 


2.建模思路


本文档采用微软开源的lightgbm算法进行分类,运行速度极快。具体步骤为:


  • 读取数据;


  • 并行运算:由于lightgbm包可以通过设置相应参数进行并行运算,因此不再调用doParallel与foreach包进行并行运算;


  • 特征选择:使用mlr包提取了99%的chi.square;


  • 调参:逐步调试lgb.cv函数的参数,并多次调试,直到满意为止;


  • 预测结果:用调试好的参数值构建lightgbm模型,输出预测结果;本案例所用程序输出结果的ROC值为0.833386,已超过Private Leaderboard排名第一的结果(0.829072)。


3.lightgbm算法


由于lightgbm算法没有给出具体的数学公式,因此此处不再介绍,如有需要,请查看github项目网址。


lightgbm算法具体介绍网址:

https://github.com/Microsoft/LightGBM


读取数据


options(java.parameters = "-Xmx8g") ## 特征选择时使用,但是需要在加载包之前设置

library(readr)
lgb_tr1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/train.csv")
lgb_te1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/test.csv")


数据探索


1.设置并行运算

library(dplyr)
library(mlr)
library(parallelMap)
parallelStartSocket(2)


2.数据各列初步探索

summarizeColumns(lgb_tr1) %>% View()


3.处理缺失值


impute missing values by mean and mode

imp_tr1 <- impute(
   as.data.frame(lgb_tr1),
   classes = list(
       integer = imputeMean(),
       numeric = imputeMean()
   )
)
imp_te1 <- impute(
   as.data.frame(lgb_te1),
   classes = list(
       integer = imputeMean(),
       numeric = imputeMean()
   )
)


处理缺失值后

summarizeColumns(imp_tr1$data) %>% View()


4.观察训练数据类别的比例–数据类别不平衡

table(lgb_tr1$TARGET)


5.剔除数据集中的常数列

lgb_tr2 <- removeConstantFeatures(imp_tr1$data)
lgb_te2 <- removeConstantFeatures(imp_te1$data)


6.保留训练数据集与测试数据及相同的列

tr2_name <- data.frame(tr2_name = colnames(lgb_tr2))
te2_name <- data.frame(te2_name = colnames(lgb_te2))
tr2_name_inner <- tr2_name %>%
   inner_join(te2_name, by = c('tr2_name' = 'te2_name'))
TARGET = data.frame(TARGET = lgb_tr2$TARGET)
lgb_tr2 <- lgb_tr2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]
lgb_te2 <- lgb_te2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]
lgb_tr2 <- cbind(lgb_tr2, TARGET)


注:

1)由于本次使用lightgbm算法,故而不对数据进行标准化处理;

2)lightgbm算法运行效率极高,1GB内不进行特征筛选也可以运行的极快,但是此处进行特征筛选,以进一步加快运行速率;

3)本案例直接进行特征筛选,未生成衍生变量,原因为:不知特征实际意义,不好随机生成。


特征筛选–卡方检验


library(lightgbm)


1.试算最大权重值程序,后面将继续优化

grid_search <- expand.grid(
   weight = seq(1, 30, 2)
   ## table(lgb_tr1$TARGET)[1] / table(lgb_tr1$TARGET)[2] = 24.27261
   ## 故而设定weight在[1, 30]之间
)

lgb_rate_1 <- numeric(length = nrow(grid_search))

set.seed(0)

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr2$TARGET * i + 1) / sum(lgb_tr2$TARGET * i + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr2[, 1:300]),
       label = lgb_tr2$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc'
   )
   # 交叉验证
   lgb_tr2_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       learning_rate = .1,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   lgb_rate_1[i] <- unlist(lgb_tr2_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr2_mod$record_evals$valid$auc$eval))]
}

library(ggplot2)
grid_search$perf <- lgb_rate_1
ggplot(grid_search,aes(x = weight, y = perf)) +
   geom_point()

从此图可知auc值受权重影响不大,在weight=5时达到最大。


3.特征选择


1)特征选择

lgb_tr2$TARGET <- factor(lgb_tr2$TARGET)
lgb.task <- makeClassifTask(data = lgb_tr2, target = 'TARGET')
lgb.task.smote <- oversample(lgb.task, rate = 5)
fv_time <- system.time(
   fv <- generateFilterValuesData(
       lgb.task.smote,
       method = c('chi.squared')
       ## 此处可以使用信息增益/卡方检验的方法,但是不建议使用随机森林方法,效率极低
       ## 如果有兴趣,也可以尝试IV值方法筛选
       ## 特征工程决定目标值(此处为auc)的上限,可以把特征筛选方法作为超参数处理
   )
)


2)制图查看

# plotFilterValues(fv)
plotFilterValuesGGVIS(fv)


3)提取99%的chi.squaredlightgbm算法效率极高,因此可以取更多的变量)


注:提取的X%的chi.squared中的X可以作为超参数处理。

fv_data2 <- fv$data %>%
   arrange(desc(chi.squared)) %>%
   mutate(chi_gain_cul = cumsum(chi.squared) / sum(chi.squared))

fv_data2_filter <- fv_data2 %>% filter(chi_gain_cul <= 0.99)
dim(fv_data2_filter) ## 减少了一半的自变量
fv_feature <- fv_data2_filter$name
lgb_tr3 <- lgb_tr2[, c(fv_feature, 'TARGET')]
lgb_te3 <- lgb_te2[, fv_feature]


4)写出数据

write_csv(lgb_tr3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')
write_csv(lgb_te3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')


算法


lgb_tr <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')
lgb_te <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')
## 建议lgb_te数据在预测时再读取,以节约内存
library(lightgbm)


1.调试weight参数

grid_search <- expand.grid(
   weight = 1:30
)

perf_weight_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc'
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       learning_rate = .1,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_weight_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

library(ggplot2)
grid_search$perf <- perf_weight_1
ggplot(grid_search,aes(x = weight, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在weight=4时达到最大,呈递减趋势。


2.调试learning_rate参数

grid_search <- expand.grid(
   learning_rate = 2 ^ (-(8:1))
)

perf_learning_rate_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_learning_rate_1
ggplot(grid_search,aes(x = learning_rate, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在learning_rate=2^(-5) 时达到最大,但是 2^(-(6:3)) 区别极小,故取learning_rate = .125,提高运行速度。


3.调试num_leaves参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = seq(50, 800, 50)
)

perf_num_leaves_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_num_leaves_1
ggplot(grid_search,aes(x = num_leaves, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在num_leaves=650时达到最大。


4.调试min_data_in_leaf参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   min_data_in_leaf = 2 ^ (1:7)
)

perf_min_data_in_leaf_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       min_data_in_leaf = grid_search[i, 'min_data_in_leaf']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_min_data_in_leaf_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_min_data_in_leaf_1
ggplot(grid_search,aes(x = min_data_in_leaf, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值对min_data_in_leaf不敏感,因此不做调整。


5.调试max_bin参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin = 2 ^ (5:10)
)

perf_max_bin_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_max_bin_1
ggplot(grid_search,aes(x = max_bin, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在max_bin=2^10 时达到最大,需要再次微调max_bin值。


6.微调max_bin参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin = 100 * (6:15)
)

perf_max_bin_2 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_max_bin_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_max_bin_2
ggplot(grid_search,aes(x = max_bin, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在max_bin=1000时达到最大。


7.调试min_data_in_bin参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 2 ^ (1:9)
   
)

perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_min_data_in_bin_1
ggplot(grid_search,aes(x = min_data_in_bin, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在min_data_in_bin=8时达到最大,但是变化极其细微,因此不做调整。


8.调试feature_fraction参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = seq(.5, 1, .02)
   
)

perf_feature_fraction_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_feature_fraction_1
ggplot(grid_search,aes(x = feature_fraction, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在feature_fraction=.62时达到最大,feature_fraction在[.60,.62]之间时,auc值保持稳定,表现较好;从.64开始呈下降趋势。


9.调试min_sum_hessian参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = seq(0, .02, .001)
)

perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_min_sum_hessian_1
ggplot(grid_search,aes(x = min_sum_hessian, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在min_sum_hessian=0.005时达到最大,建议min_sum_hessian取值在[0.002, 0.005]区间,0.005后呈递减趋势。


10.调试lamda参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = seq(0, .01, .002),
   lambda_l2 = seq(0, .01, .002)
)

perf_lamda_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_lamda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_lamda_1
ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +
   geom_point() +
   facet_wrap(~ lambda_l2, nrow = 5)

从此图可知建议lambda_l1 = 0, lambda_l2 = 0


11.调试drop_rate参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = seq(0, 1, .1)
)

perf_drop_rate_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_drop_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_drop_rate_1
ggplot(data = grid_search, aes(x = drop_rate, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在drop_rate=0.2时达到最大,在0, .2, .5较好;在[0, 1]变化不大。


12.调试max_drop参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = seq(1, 10, 2)
)

perf_max_drop_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_max_drop_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_max_drop_1
ggplot(data = grid_search, aes(x = max_drop, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在max_drop=5时达到最大,在[1, 10]区间变化较小。


二次调参


1.调试weight参数

grid_search <- expand.grid(
   learning_rate = .125,
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_weight_2 <- numeric(length = nrow(grid_search))

for(i in 1:20){
   lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[1, 'learning_rate'],
       num_leaves = grid_search[1, 'num_leaves'],
       max_bin = grid_search[1, 'max_bin'],
       min_data_in_bin = grid_search[1, 'min_data_in_bin'],
       feature_fraction = grid_search[1, 'feature_fraction'],
       min_sum_hessian = grid_search[1, 'min_sum_hessian'],
       lambda_l1 = grid_search[1, 'lambda_l1'],
       lambda_l2 = grid_search[1, 'lambda_l2'],
       drop_rate = grid_search[1, 'drop_rate'],
       max_drop = grid_search[1, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       learning_rate = .1,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_weight_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

library(ggplot2)
ggplot(data.frame(num = 1:length(perf_weight_2), perf = perf_weight_2), aes(x = num, y = perf)) +
   geom_point() +
   geom_smooth()

从此图可知auc值在weight>=3时auc趋于稳定, weight=7 the max


2.调试learning_rate参数

grid_search <- expand.grid(
   learning_rate = seq(.05, .5, .03),
   num_leaves = 650,
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_learning_rate_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_learning_rate_1
ggplot(data = grid_search, aes(x = learning_rate, y = perf)) +
   geom_point() +
   geom_smooth()

结论:learning_rate=.11时,auc最大。


3.调试num_leaves参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = seq(100, 800, 50),
   max_bin=1000,
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_num_leaves_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_num_leaves_1
ggplot(data = grid_search, aes(x = num_leaves, y = perf)) +
   geom_point() +
   geom_smooth()

结论:num_leaves=200时,auc最大。


4.调试max_bin参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = seq(100, 1500, 100),
   min_data_in_bin = 8,
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_max_bin_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_max_bin_1
ggplot(data = grid_search, aes(x = max_bin, y = perf)) +
   geom_point() +
   geom_smooth()

结论:max_bin=600时,auc最大;400,800也是可接受值。


5.调试min_data_in_bin参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = 600,
   min_data_in_bin = seq(5, 50, 5),
   feature_fraction = .62,
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_min_data_in_bin_1
ggplot(data = grid_search, aes(x = min_data_in_bin, y = perf)) +
   geom_point() +
   geom_smooth()

结论:min_data_in_bin=45时,auc最大;其中25是可接受值。


6.调试feature_fraction参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = 600,
   min_data_in_bin = 45,
   feature_fraction = seq(.5, .9, .02),
   min_sum_hessian = .005,
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_feature_fraction_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_feature_fraction_1
ggplot(data = grid_search, aes(x = feature_fraction, y = perf)) +
   geom_point() +
   geom_smooth()

结论:feature_fraction=.54时,auc最大, .56, .58时也较好。


7.调试min_sum_hessian参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = 600,
   min_data_in_bin = 45,
   feature_fraction = .54,
   min_sum_hessian = seq(.001, .008, .0005),
   lambda_l1 = 0,
   lambda_l2 = 0,
   drop_rate = .2,
   max_drop = 5
)

perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_min_sum_hessian_1
ggplot(data = grid_search, aes(x = min_sum_hessian, y = perf)) +
   geom_point() +
   geom_smooth()

结论:min_sum_hessian=0.0065时auc取得最大值,取min_sum_hessian=0.003,0.0055时可接受。


8.调试lambda参数

grid_search <- expand.grid(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = 600,
   min_data_in_bin = 45,
   feature_fraction = .54,
   min_sum_hessian = 0.0065,
   lambda_l1 = seq(0, .001, .0002),
   lambda_l2 = seq(0, .001, .0002),
   drop_rate = .2,
   max_drop = 5
)

perf_lambda_1 <- numeric(length = nrow(grid_search))

for(i in 1:nrow(grid_search)){
   lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)
   
   lgb_train <- lgb.Dataset(
       data = data.matrix(lgb_tr[, 1:148]),
       label = lgb_tr$TARGET,
       free_raw_data = FALSE,
       weight = lgb_weight
   )
   
   # 参数
   params <- list(
       objective = 'binary',
       metric = 'auc',
       learning_rate = grid_search[i, 'learning_rate'],
       num_leaves = grid_search[i, 'num_leaves'],
       max_bin = grid_search[i, 'max_bin'],
       min_data_in_bin = grid_search[i, 'min_data_in_bin'],
       feature_fraction = grid_search[i, 'feature_fraction'],
       min_sum_hessian = grid_search[i, 'min_sum_hessian'],
       lambda_l1 = grid_search[i, 'lambda_l1'],
       lambda_l2 = grid_search[i, 'lambda_l2'],
       drop_rate = grid_search[i, 'drop_rate'],
       max_drop = grid_search[i, 'max_drop']
   )
   # 交叉验证
   lgb_tr_mod <- lgb.cv(
       params,
       data = lgb_train,
       nrounds = 300,
       stratified = TRUE,
       nfold = 10,
       num_threads = 2,
       early_stopping_rounds = 10
   )
   perf_lambda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]
}

grid_search$perf <- perf_lambda_1
ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +
   geom_point() +
   facet_wrap(~ lambda_l2, nrow = 5)

结论:lambda与auc整体呈负相关,取lambda_l1=.0002, lambda_l2 = .0004


9.调试drop_rate参数

结论:drop_rate=.4时取到最大值,.15, .25可接受。


10.调试max_drop参数

结论:drop_rate=.4时取到最大值,.15, .25可接受。

预测

1.权重

lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)


2.训练数据集

lgb_train <- lgb.Dataset(
   data = data.matrix(lgb_tr[, 1:148]),
   label = lgb_tr$TARGET,
   free_raw_data = FALSE,
   weight = lgb_weight
)


3.训练

# 参数
params <- list(
   learning_rate = .11,
   num_leaves = 200,
   max_bin = 600,
   min_data_in_bin = 45,
   feature_fraction = .54,
   min_sum_hessian = 0.0065,
   lambda_l1 = .0002,
   lambda_l2 = .0004,
   drop_rate = .4,
   max_drop = 14
)

# 模型
lgb_mod <- lightgbm(
   params = params,
   data = lgb_train,
   nrounds = 300,
   early_stopping_rounds = 10,
   num_threads = 2
)

# 预测
lgb.pred <- predict(lgb_mod, data.matrix(lgb_te))


4.结果

lgb.pred2 <- matrix(unlist(lgb.pred), ncol = 1)
lgb.pred3 <- data.frame(lgb.pred2)


5.输出

write.csv(lgb.pred3, "C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb.pred1_tr.csv")


注: 此处给在校读书的朋友一些建议:

1.在学校学习机器学习算法时,测试所用数据量一般较少,因此可以尝试大多数算法,大多数的R函数,例如测试随机森林算法时,可以选择randomforest包,如果数据量稍微增多,可以设置并行运算,但是如果数据量达到GB级别,并行运算randomforest包也处理不了了,并且内存会溢出;建议使用专业版R中的函数;


2.学校学习主要针对理论进行学习,测试数据一般较为干净,实际数据结构一般更为复杂一些。


大数据文摘微信公众号后台回复“算法”可获得完整代码。


本文为投稿作品,仅代表个人观点。

作者介绍:

苏高生,西南财经大学统计学硕士毕业,现就职于中国电信,主要负责企业存量客户数据分析、数据建模。 研究方向:机器学习。知乎专栏链接接:

https://zhuanlan.zhihu.com/p/34216748

关于算法,如有疑问,请联系E-mail:sugs01@outlook.com


【今日机器学习概念】

Have a Great Definition


登录查看更多
7

相关内容

TR:IEEE Transactions on Robotics Explanation: Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/journals/trob/
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
专知会员服务
82+阅读 · 2020年5月16日
一文教你如何处理不平衡数据集(附代码)
大数据文摘
11+阅读 · 2019年6月2日
特征工程方法:一、类别变量编码
论智
5+阅读 · 2018年11月20日
LightGBM 大战 XGBoost,谁将夺得桂冠?
AI研习社
7+阅读 · 2018年4月17日
比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码)
数据挖掘入门与实战
23+阅读 · 2018年4月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
文本分类实战: 机器学习vs深度学习算法对比(附代码)
机器学习研究会
35+阅读 · 2017年10月25日
机器学习之确定最佳聚类数目的10种方法
炼数成金订阅号
13+阅读 · 2017年10月12日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
一文教你如何处理不平衡数据集(附代码)
大数据文摘
11+阅读 · 2019年6月2日
特征工程方法:一、类别变量编码
论智
5+阅读 · 2018年11月20日
LightGBM 大战 XGBoost,谁将夺得桂冠?
AI研习社
7+阅读 · 2018年4月17日
比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码)
数据挖掘入门与实战
23+阅读 · 2018年4月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Xgboost算法——Kaggle案例
R语言中文社区
13+阅读 · 2018年3月13日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
文本分类实战: 机器学习vs深度学习算法对比(附代码)
机器学习研究会
35+阅读 · 2017年10月25日
机器学习之确定最佳聚类数目的10种方法
炼数成金订阅号
13+阅读 · 2017年10月12日
相关论文
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
7+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员