Random walks can reveal communities or clusters in networks, because they are more likely to stay within a cluster than leave it. Thus, one family of community detection algorithms uses random walks to measure distance between pairs of nodes in various ways, and then applies K-Means or other generic clustering methods to these distances. Interestingly, information processing in the brain may suggest a simpler method of learning clusters directly from random walks. Drawing inspiration from the hippocampus, we describe a simple two-layer neural learning framework. Neurons in one layer are associated with graph nodes and simulate random walks. These simulations cause neurons in the second layer to become tuned to graph clusters through simple associative learning. We show that if these neuronal interactions are modelled a particular way, the system is essentially a variant of K-Means clustering applied directly in the walk-space, bypassing the usual step of computing node distances/similarities. The result is an efficient graph clustering method. Biological information processing systems are known for high efficiency and adaptability. In tests on benchmark graphs, our framework demonstrates this high data-efficiency, low memory use, low complexity, and real-time adaptation to graph changes, while still achieving clustering quality comparable to other algorithms.
翻译:随机行走可以揭示网络中的群落或群集, 因为他们更有可能停留在一个群集中, 而不是离开群集中。 因此, 一个社区检测算法家族以各种方式使用随机行走来测量结点对两个节点之间的距离, 然后将K- Means 或其他通用群集方法应用到这些距离上。 有趣的是, 大脑中的信息处理可以建议一种直接从随机行走中学习群集的简单方法。 从河马坎普斯中提取灵感, 我们描述一个简单的两层神经学习框架。 一个层的神经与图形节点和模拟随机行走有关。 这些模拟使第二层神经元通过简单的关联学习而调整到图形群。 我们显示, 如果这些神经性互动是模拟一种特定的方式, 系统实质上是直接在行走空间应用的K- Means 群集的变体, 绕过通常的计算节点距离/ 相似的一步。 结果是高效的图形组合法。 生物信息处理系统是高效率和适应性的。 在基准图表的测试中, 我们的框架展示了这种高数据效率、 低存储率、 低复杂度和实时适应到图形的矩阵。