We consider a dynamical system, defined by a system of autonomous differential equations, on $\Omega\subset\mathbb{R}^n$. By using Mickens' rule on the nonlocal approximation of nonlinear terms, we construct an implicit Nonstandard Finite Difference (NSFD) scheme that, under an existence and uniqueness condition, is an explicit time reversible scheme. Apart from being elementary stable, we show that the NSFD scheme is of second-order and domain-preserving, thereby solving a pending problem on the construction of higher-order nonstandard schemes without spurious solutions, and extending the tangent condition to discrete dynamical systems. It is shown that the new scheme applies directly for mass action-based models of biological and chemical processes.
翻译:我们认为,这是一个动态的系统,由自主差异方程式系统界定,其定义为$\Omega\subts\mathb{R ⁇ n$。我们利用米肯斯关于非线性条件非本地近似的规则,构建了一个隐含的非标准有限差异(NSFD)计划,在存在和独特性条件下,该计划是一个明确的时间可逆计划。我们表明,除了基本稳定之外,国家可持续发展机制是二级和域保留,从而解决了在不产生虚假解决办法的情况下构建更高等级的非标准计划方面的未决问题,并将相切性条件扩大到离散动态系统。我们表明,新计划直接适用于基于大规模行动的生物和化学过程模型。