As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy controller in combination with a sliding-mode control (SMC)-theory-based learning algorithm. The proposed control structure consists of a neuro-fuzzy network and a conventional controller which is used to guarantee the asymptotic stability of the system in a compact space. The parameter updating rules of the neuro-fuzzy system using SMC theory are derived, and the stability of the learning is proven using a Lyapunov function. The simulation results show that the control scheme with the proposed SMC-theory-based learning algorithm is able to not only eliminate the steady-state error but also improve the transient response performance of the spherical rolling robot without knowing its dynamic equations.
翻译:由于模型只是实际系统的抽象, 未经建模的动态、 参数变异和扰动可能会导致基于此模型的常规控制器的性能差。 在这种情况下, 常规控制器无法保持良好调控 。 本文展示了球形滚动机器人的控制, 使用适应性神经模糊控制器, 结合滑动模式控制( SMC) 理论学习算法。 拟议的控制结构包括神经模糊网络和常规控制器, 用于保证紧凑空间系统无症状稳定性。 使用 SMC 理论更新神经发泡系统规则的参数是衍生出来的, 学习的稳定性是使用 Lyapunov 函数证明的。 模拟结果显示, 与拟议的 SMC 理论学习算法相比的控制方案不仅能够消除恒定状态错误, 还能提高球形滚动机器人的快速反应性能, 而不知道其动态方程式 。