We present a continuous-time probabilistic approach for estimating the chirp signal and its instantaneous frequency function when the true forms of these functions are not accessible. Our model represents these functions by non-linearly cascaded Gaussian processes represented as non-linear stochastic differential equations. The posterior distribution of the functions is then estimated with stochastic filters and smoothers. We compute a (posterior) Cram\'er--Rao lower bound for the Gaussian process model, and derive a theoretical upper bound for the estimation error in the mean squared sense. The experiments show that the proposed method outperforms a number of state-of-the-art methods on a synthetic data. We also show that the method works out-of-the-box for two real-world datasets.
翻译:当无法获取这些函数的真实形式时,我们提出了一个持续的时间概率方法来估计cirp信号及其瞬时频率功能。我们的模型代表着这些功能,这些功能由非线性级级的高斯进程代表为非线性随机差异方程式。这些函数的后端分布随后用随机过滤器和光滑器来估计。我们计算了高斯进程模型中一个(前缘)Cram\'er-Rao的下界,并得出了平均正方形意义上估算错误的理论上限。实验显示,拟议方法在合成数据上优于一些最先进的方法。我们还显示,该方法在两个真实世界数据集中运行的框外。