Automatic identification of patients with luminal and non-luminal subtypes during a routine mammography screening can support clinicians in streamlining breast cancer therapy planning. Recent machine learning techniques have shown promising results in molecular subtype classification in mammography; however, they are highly dependent on pixel-level annotations, handcrafted, and radiomic features. In this work, we provide initial insights into the luminal subtype classification in full mammogram images trained using only image-level labels. Transfer learning is applied from a breast abnormality classification task, to finetune a ResNet-18-based luminal versus non-luminal subtype classification task. We present and compare our results on the publicly available CMMD dataset and show that our approach significantly outperforms the baseline classifier by achieving a mean AUC score of 0.6688 and a mean F1 score of 0.6693 on the test dataset. The improvement over baseline is statistically significant, with a p-value of p<0.0001.


翻译:在常规乳房X光X光检查期间,对有光和非光分型的病人进行自动鉴定,可以帮助临床医生简化乳腺癌治疗规划。最近的机器学习技术在乳房X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光;我们X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员