Automatic identification of patients with luminal and non-luminal subtypes during a routine mammography screening can support clinicians in streamlining breast cancer therapy planning. Recent machine learning techniques have shown promising results in molecular subtype classification in mammography; however, they are highly dependent on pixel-level annotations, handcrafted, and radiomic features. In this work, we provide initial insights into the luminal subtype classification in full mammogram images trained using only image-level labels. Transfer learning is applied from a breast abnormality classification task, to finetune a ResNet-18-based luminal versus non-luminal subtype classification task. We present and compare our results on the publicly available CMMD dataset and show that our approach significantly outperforms the baseline classifier by achieving a mean AUC score of 0.6688 and a mean F1 score of 0.6693 on the test dataset. The improvement over baseline is statistically significant, with a p-value of p<0.0001.
翻译:在常规乳房X光X光检查期间,对有光和非光分型的病人进行自动鉴定,可以帮助临床医生简化乳腺癌治疗规划。最近的机器学习技术在乳房X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光;我们X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光X光