Matroids are a fundamental object of study in combinatorial optimization. Three closely related and important problems involving matroids are maximizing the size of the union of $k$ independent sets (that is, $k$-fold matroid union), computing $k$ disjoint bases (a.k.a. matroid base packing), and covering the elements by $k$ bases (a.k.a. matroid base covering). These problems generalize naturally to integral and real-valued capacities on the elements. This work develops faster exact and/or approximation problems for these and some other closely related problems such as optimal reinforcement and matroid membership. We obtain improved running times both for general matroids in the independence oracle model and for the graphic matroid. The main thrust of our improvements comes from developing a faster and unifying push-relabel algorithm for the integer-capacitated versions of these problems, building on previous work by Frank and Mikl\'os [FM12]. We then build on this algorithm in two directions. First we develop a faster augmenting path subroutine for $k$-fold matroid union that, when appended to an approximation version of the push-relabel algorithm, gives a faster exact algorithm for some parameters of $k$. In particular we obtain a subquadratic-query running time in the uncapacitated setting for the three basic problems listed above. We also obtain faster approximation algorithms for these problems with real-valued capacities by reducing to small integral capacities via randomized rounding. To this end, we develop a new randomized rounding technique for base covering problems in matroids that may also be of independent interest.
翻译:固醇是组合优化的基本研究对象。 三个密切相关和重要的问题与固醇有关, 三个密切相关和重要的问题正在使美元独立组合的规模最大化( 即, 美元翻转的机体联盟 ), 计算美元脱节基数( a. k. a. a. a. a. a. a. a. mildroid base ), 覆盖基数( a. k. a. a. mildroid base) 。 这些问题自然概括为元素的整体和真实价值能力。 这项工作为这些元素和其他一些密切相关的问题, 以及一些随机增强和( 或) 近似问题, 例如, 优化的强化和类固醇成员身份。 我们获得更好的运行时间, 包括独立或超重的基数的基数( 美元) 。 我们的主要改进要来自于为这些问题的整形电算法的快速和统一的推算法。 然后我们从两个方向建立这个算法。 首先, 我们开发一个更快的更快速的基数路径, 以小的基数的基数联盟, 当我们获得一个快速的基数的基数的算算时, 我们的基数的基数的算算算算法 将一个不精确的基数的基数 将一个比的基数的基数的基数变法, 我们的基数的基数的基数的基数的基数的基数的基数的基数变法, 将比的基数推算算进到一个比。</s>