We consider a discrete time stochastic model with infinite variance and study the mean estimation problem as in Wang and Ramdas (2023). We refine the Catoni-type confidence sequence (abbr. CS) and use an idea of Bhatt et al. (2022) to achieve notable improvements of some currently existing results for such model. Specifically, for given $\alpha \in (0, 1]$, we assume that there is a known upper bound $\nu_{\alpha} > 0$ for the $(1 + \alpha)$-th central moment of the population distribution that the sample follows. Our findings replicate and `optimize' results in the above references for $\alpha = 1$ (i.e., in models with finite variance) and enhance the results for $\alpha < 1$. Furthermore, by employing the stitching method, we derive an upper bound on the width of the CS as $\mathcal{O} \left(((\log \log t)/t)^{\frac{\alpha}{1+\alpha}}\right)$ for the shrinking rate as $t$ increases, and $\mathcal{O}(\left(\log (1/\delta)\right)^{\frac{\alpha }{1+\alpha}})$ for the growth rate as $\delta$ decreases. These bounds are improving upon the bounds found in Wang and Ramdas (2023). Our theoretical results are illustrated by results from a series of simulation experiments. Comparing the performance of our improved $\alpha$-Catoni-type CS with the bound in the above cited paper indicates that our CS achieves tighter width.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员