Reconstructing 3D geometry from \emph{unoriented} point clouds can benefit many downstream tasks. Recent shape modeling methods mostly adopt implicit neural representation to fit a signed distance field (SDF) and optimize the network by \emph{unsigned} supervision. However, these methods occasionally have difficulty in finding the coarse shape for complicated objects, especially suffering from the ``ghost'' surfaces (\ie, fake surfaces that should not exist). To guide the network quickly fit the coarse shape, we propose to utilize the signed supervision in regions that are obviously outside the object and can be easily determined, resulting in our semi-signed supervision. To better recover high-fidelity details, a novel importance sampling based on tracked region losses and a progressive positional encoding (PE) prioritize the optimization towards underfitting and complicated regions. Specifically, we voxelize and partition the object space into \emph{sign-known} and \emph{sign-uncertain} regions, in which different supervisions are applied. Besides, we adaptively adjust the sampling rate of each voxel according to the tracked reconstruction loss, so that the network can focus more on the complicated under-fitting regions. To this end, we propose our semi-signed prioritized (SSP) neural fitting, and conduct extensive experiments to demonstrate that SSP achieves state-of-the-art performance on multiple datasets including the ABC subset and various challenging data. The code will be released upon the publication.


翻译:从 emph{unmitr} 点云重建 3D 几何方法可以帮助许多下游任务 。 最近的形状模型方法大多采用隐含神经表示法, 以适合签名的距离场( SDF), 并通过\ emph{unmitr} 监督优化网络。 但是, 这些方法有时难以找到复杂物体的粗糙形状, 特别是受“ ghost” 表面(\, 假表面, 不应该存在 ) 影响。 为了快速引导网络适合粗糙的形状, 我们提议在明显不在目标范围、可以轻易确定、导致我们半签名监督的区域使用已签名的监督。 要更好地恢复高纤维度的细节, 以跟踪区域损失为基础的新型重要取样, 以及渐进式定位编码( PE) 将优化到不完善和复杂的区域 。 具体地说, 我们将物体空间的蒸馏和分区分隔成, 将应用不同的监视系统。 此外, 我们调整了每个oxel 的取样率率, 包括跟踪的重建过程, SSP 将显示我们最复杂的数据 的运行过程 。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员