We work with combinatorial maps to represent graph embeddings into surfaces up to isotopy. The surface in which the graph is embedded is left implicit in this approach. The constructions herein are proof-relevant and stated with a subset of the language of homotopy type theory. This article presents a refinement of one characterisation of embeddings in the sphere, called spherical maps, of connected and directed multigraphs with discrete node sets. A combinatorial notion of homotopy for walks and the normal form of walks under a reduction relation is introduced. The first characterisation of spherical maps states that a graph can be embedded in the sphere if any pair of walks with the same endpoints are merely walk-homotopic. The refinement of this definition filters out any walk with inner cycles. As we prove in one of the lemmas, if a spherical map is given for a graph with a discrete node set, then any walk in the graph is merely walk-homotopic to a normal form. The proof assistant Agda contributed to formalising the results recorded in this article.
翻译:我们用组合式地图来代表图形嵌入地表到异调层。 嵌入图形的表面在这种方式中被隐含。 这里的构造与证据相关, 并用同质类型理论的语言的子集来说明。 文章对球体中嵌入的特性作了精细化, 称为球形地图, 有离散节点装置的连接和定向多面图进行了精细化。 引入了一个组合式概念, 即行走的同质和缩小关系下的正常行走形式。 球形地图的第一个特征显示, 如果任何带有相同终点的行走配对都是行走的, 可以将图表嵌入球体中。 此定义过滤器的精细化与内部循环有关。 正如我们在一个元素中证明的那样, 如果给带有离散节点的图形提供球形地图, 那么在图形中的任何行走的路径都只是步式和式, 通常的形式。 Agda 助理协助将本文章中记录的结果正规化 。