We introduce a metric space of clusterings, where clusterings are described by a binary vector indexed by the vertex-pairs. We extend this geometry to a hypersphere and prove that maximizing modularity is equivalent to minimizing the angular distance to some modularity vector over the set of clustering vectors. In that sense, modularity-based community detection methods can be seen as a subclass of a more general class of projection methods, which we define as the community detection methods that adhere to the following two-step procedure: first, mapping the network to a point on the hypersphere; second, projecting this point to the set of clustering vectors. We show that this class of projection methods contains many interesting community detection methods. Many of these new methods cannot be described in terms of null models and resolution parameters, as is customary for modularity-based methods. We provide a new characterization of such methods in terms of meridians and latitudes of the hypersphere. In addition, by relating the modularity resolution parameter to the latitude of the corresponding modularity vector, we obtain a new interpretation of the resolution limit that modularity maximization is known to suffer from.
翻译:我们引入了集束的衡量空间, 集束是由按顶脊柱指数指数的二进矢量描述的。 我们将这一几何方法扩展至超视距, 并证明最大模块化方法相当于在一组集束矢量上将角距离与某些模块化矢量之间的距离最小化。 从这个意义上讲, 基于模块化的群落检测方法可以被视为更一般的投影方法分类的子类, 我们将这些方法界定为符合以下两步程序的群落检测方法: 首先, 绘制网络图, 绘制网络到超视谱上的一个点; 第二, 将这一点投射到一组集束矢量矢量上。 我们表明, 这一类别投影方法包含许多有趣的群落检测方法。 许多这些新方法不能像基于模块化的方法通常那样,用无效模型和分辨率参数来描述。 我们从中提供了对此类方法的新特征的描述, 即以中度和超视距纬度为符合以下两步程序的群落检测方法。 此外, 通过将模块化分辨率参数与相应模块化矢量的纬度联系起来, 我们获得了对分辨率限度的新的解释。