Reconstruction of indoor surfaces with limited texture information or with repeated textures, a situation common in walls and ceilings, may be difficult with a monocular Structure from Motion system. We propose a Semantic Room Wireframe Detection task to predict a Semantic Wireframe from a single perspective image. Such predictions may be used with shape priors to estimate the Room Layout and aid reconstruction. To train and test the proposed algorithm we create a new set of annotations from the simulated Structured3D dataset. We show qualitatively that the SRW-Net handles complex room geometries better than previous Room Layout Estimation algorithms while quantitatively out-performing the baseline in non-semantic Wireframe Detection.
翻译:以有限的纹理信息或重复的纹理重建室内表面,墙壁和天花板上的一种常见情况,在运动系统中的单体结构中可能很难做到。我们提议用一个语义室 Wireframe 探测任务,从单一的图像中预测一个语义线框架。这种预测可以在形状前用来估计房间布局和协助重建。为了培训和测试拟议的算法,我们从模拟结构3D数据集中创建了一套新的说明。我们从质量上表明,SRW-Net处理复杂的房间地貌比以前的房间布局估计算法要好,而在数量上比非语义式的 Wirefram 探测基准值要好。