We present a new framework to reconstruct holistic 3D indoor scenes including both room background and indoor objects from single-view images. Existing methods can only produce 3D shapes of indoor objects with limited geometry quality because of the heavy occlusion of indoor scenes. To solve this, we propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction. Combining with instance-aligned attention module, our method is empowered to decouple mixed local features toward the occluded instances. Additionally, unlike previous methods that simply represents the room background as a 3D bounding box, depth map or a set of planes, we recover the fine geometry of the background via implicit representation. Extensive experiments on the e SUN RGB-D, Pix3D, 3D-FUTURE, and 3D-FRONT datasets demonstrate that our method outperforms existing approaches in both background and foreground object reconstruction. Our code and model will be made publicly available.
翻译:我们提出了一个从单视图像中重建整体三维室内场景的新框架,包括房间背景和室内物体。 现有方法只能产生室内物体的三维形状, 由于室内场景的密集封闭, 其几何质量有限。 为了解决这个问题, 我们提议了用于详细天体重建的符合实例的隐含功能( InstPIFu ) 。 与按实例关注模块相结合, 我们的方法能够将地方特征混杂到隐蔽的场景中。 此外, 以往的方法只是将房间背景作为三维捆绑框、 深度地图或一组飞机, 不同于以往的方法, 我们通过隐含的表达方式恢复了背景的精细几何形状。 在 e SUN RGB- D、 Pix3D、 3D- FUTURE 和 3D- FRONET 数据集上进行的广泛实验表明, 我们的方法在背景和地面物体重建中都超越了现有的方法。 我们的代码和模型将被公诸于众。