项目名称: 基于磁性纳米粒子磁信号放大全血中循环肿瘤细胞高效分离新方法的研究

项目编号: No.81201691

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 肿瘤学1

项目作者: 许恒毅

作者单位: 南昌大学

项目金额: 23万元

中文摘要: 癌症的早期精确诊断是癌症控制及延长癌症患者寿命的有效途径。外周血中的循环肿瘤细胞(CTCs)可用来预示早期癌症,建立其高效、特异性磁分离方法具有重要的理论探索价值。在前期工作中,申请人利用磁性纳米粒子(30 nm)实现了全血中痕量CTCs的高效富集,然而存在分离时间过长、所需磁场梯度较高等问题。为此,本项目拟:1、采用兼容性分子修饰技术和表面电荷控制技术,通过降低磁性纳米粒子表面电势、减少磁细胞分离时的斥力,以缩短癌细胞分离时间;2、利用链霉亲和素(SA)和生物素(Biotin)体系,探讨不同粒径(30 nm,60 nm,100 nm)磁性纳米粒子分离全血中CTCs时磁信号级联放大行为,实现低梯度磁场下(小于30 T/m)全血中CTCs特异性快速分离。预期研究结果将为利用磁性纳米粒子实现早期癌细胞的快速诊断提供新思路和科学依据。

中文关键词: 循环肿瘤细胞;免疫磁分离;磁信号放大;富集分离;

英文摘要: Accurate diagnosis of cancer in its early stage can help to control the cancer and thus prolong the survival of cancer patients. Circulating tumor cells (CTCs) presented in peripheral blood can predict early stage cancer, rapid and high specific magnetic separation of CTCs is meaningful both theoretically and practically. In our previous study, we have successfully enriched CTCs from fresh whole blood using 30 nm magnetic nanocrystals, however, the separation time was too long and the magnetic gradient used for separation was too high. In the present project, following research work were proposed in order to solve the time and magnetic gradient issue. 1. Biocompatible modification and surface charge control will be performed in the proposed research, both zeta potential and repulsive force will be decreased after above modifications. 2. Magnetic signals will be amplified using streptavidin and biotin interactions, and magnetic nanocrystals in diameters of 30, 60, and 100 nm will be discussed for their behaviors how they affect the CTCs separation in whole blood. Our final goal is to separate CTCs in whole blood in 30 min with magnetic gradient of 30 T/m, proving new approaches and basis for early stage cancer diagnosis.

英文关键词: circulating tumor cells;immunomagnetic separation;magnetic signals amplification;enrichment and separation;

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
84+阅读 · 2020年12月5日
当 AI 遇上合成生物,人造细胞前景几何?
机器之心
0+阅读 · 2022年1月3日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
84+阅读 · 2020年12月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员