New powerful tools for tackling life science problems have been created by recent advances in machine learning. The purpose of the paper is to discuss the potential advantages of gene recommendation performed by artificial intelligence (AI). Indeed, gene recommendation engines try to solve this problem: if the user is interested in a set of genes, which other genes are likely to be related to the starting set and should be investigated? This task was solved with a custom deep learning recommendation engine, DeepProphet2 (DP2), which is freely available to researchers worldwide via https://www.generecommender.com?utm_source=DeepProphet2_paper&utm_medium=pdf. Hereafter, insights behind the algorithm and its practical applications are illustrated. The gene recommendation problem can be addressed by mapping the genes to a metric space where a distance can be defined to represent the real semantic distance between them. To achieve this objective a transformer-based model has been trained on a well-curated freely available paper corpus, PubMed. The paper describes multiple optimization procedures that were employed to obtain the best bias-variance trade-off, focusing on embedding size and network depth. In this context, the model's ability to discover sets of genes implicated in diseases and pathways was assessed through cross-validation. A simple assumption guided the procedure: the network had no direct knowledge of pathways and diseases but learned genes' similarities and the interactions among them. Moreover, to further investigate the space where the neural network represents genes, the dimensionality of the embedding was reduced, and the results were projected onto a human-comprehensible space. In conclusion, a set of use cases illustrates the algorithm's potential applications in a real word setting.


翻译:处理生命科学问题的新的强大工具已经由最近机器学习的进步创造了。 本文的目的是讨论人工智能(AI) 所实施的基因建议的潜在好处。 事实上, 基因建议引擎试图解决这个问题: 如果用户对一组基因感兴趣, 其他基因可能与启动的一组有关, 应该调查这些基因? 这项任务是通过一个定制的深层次学习建议引擎Deep Prophet2 (DP2)来解决的, 全世界研究人员可以通过https://www.generecommeder.comding. com?utm_sours_source=Deep Propheet2_paper&utm_modeble=pdf免费获得基因建议的潜在好处。 下一步, 算算算算法背后的洞察力及其实际应用。 基因建议问题可以通过将基因绘制成一个测量空间空间空间空间, 来代表它们之间的真实的语系距离。 为实现这个目标, 一个基于变压模型已经通过一个精密的可自由获取的纸质( PubMed) 。 本文描述了多个优化程序, 用来获取最佳的偏差度交易, 但它是用来在虚拟网络中, 嵌入网络的路径和深度中, 直置的路径中, 理解的路径中, 直置的路径和直置的路径理解的路径的路径, 直置的路径 。 。 一个过程是用来显示的路径的路径的路径和直置入的路径的路径的路径的路径的路径的路径的路径 。 。 。 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
64+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
23+阅读 · 2018年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员