In this paper, a new method is given for counting cycles in the Tanner graph of a (Type-I) quasi-cyclic (QC) low-density parity-check (LDPC) code which the complexity mainly is dependent on the base matrix, independent from the CPM-size of the constructed code. Interestingly, for large CPM-sizes, in comparison of the existing methods, this algorithm is the first approach which efficiently counts the cycles in the Tanner graphs of QC-LDPC codes. In fact, the algorithm recursively counts the cycles in the parity-check matrix column-by-column by finding all non-isomorph tailless backtrackless closed (TBC) walks in the base graph and enumerating theoretically their corresponding cycles in the same equivalent class. Moreover, this approach can be modified in few steps to find the cycle distributions of a class of LDPC codes based on Affine permutation matrices (APM-LDPC codes). Interestingly, unlike the existing methods which count the cycles up to $2g-2$, where $g$ is the girth, the proposed algorithm can be used to enumerate the cycles of arbitrary length in the Tanner graph. Moreover, the proposed cycle searching algorithm improves upon various previously known methods, in terms of computational complexity and memory requirements.
翻译:暂无翻译