In this paper, we give pointwise estimates of a Vorono\"i-based finite volume approximation of the Laplace-Beltrami operator on Vorono\"i-Delaunay decompositions of the sphere. These estimates are the basis for a local error analysis, in the maximum norm, of the approximate solution of the Poisson equation and its gradient. Here, we consider the Vorono\"i-based finite volume method as a perturbation of the finite element method. Finally, using regularized Green's functions, we derive quasi-optimal convergence order in the maximum-norm with minimal regularity requirements. Numerical examples show that the convergence is at least as good as predicted.
翻译:在本文中,我们给出了基于 Voronoï-Delaunay 测度的球面 Laplace-Beltrami 算子的 Voronoï 有限体积逼近的点值估计。这些估计构成了求解 Poisson 方程及其梯度的近似解的局部误差分析的基础。在此,我们将基于 Voronoï 的有限体积方法视为有限元法的一种扰动。最后,通过正则化的 Green 函数,我们得到了在最大范数下具有极优收敛阶的准确收敛速度,具有最少的正则化要求。数值实验表明,收敛至少与预测一样好。