项目名称: 一类Robin反问题的数值解法

项目编号: No.11271238

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 林福荣

作者单位: 汕头大学

项目金额: 50万元

中文摘要: Robin反问题是来自偏微分方程的非线性反问题,有广泛的应用背景,例如非破坏性估测技术的定量分析、温度与热流量的确定以及冰原预报的初始化等。由于Robin反问题应用广泛且求解难度大,其数值解法一直是一个研究热点。对该反问题的数值解法作深入系统的研究,具有重要的科学意义和应用价值。 本项目以边界积分方程为工具研究一类Robin反问题的数值解法。基础研究内容是构造核函数有弱奇性的积分算子的高精度离散公式、矩阵-向量快速相乘新算法和新的罚函数。这些基础研究内容有很好的可移植性,预期成果可以推广应用于有弱奇异核的积分方程和一些类型的不适定问题。我们计划把Robin反问题转化为极小化问题,并根据Robin系数的光滑性质提出不同的罚函数,得到不同的正则化极小化问题,然后研究这些极小化问题的快速数值求解方法。 预期分别得到求解连续、分段/分块常数和分段/分块连续Robin系数的有效数值方法。

中文关键词: Robin反问题;边界积分方程;正则化方法;正则化参数;快速算法

英文摘要: Robin inverse problems are nonlinear inverse problems arising from partial differential equations. This kind of inverse problems arise in a variety of applications, including various nondestructive evaluation methods where an unknown material profile in a non-accessible part of the boundary is to be recovered from a partial boundary measurement made on an accessible part of the boundary, determination of temperatures and heat fluxes, and initialization of ice-sheet forecasts, etc. Robin inverse problems are very difficult to be solved numerically due to the ill-posedness nature of the problem. In recent years, numerical solution methods for the problem have been attracting a lot of attentions. A systematic research on numerical solution methods for Robin inverse problems has significant scientific meanings and great potential in applications. In this project, we are concerned with numerical solution methods for a type of Robin inverse problems with boundary integral equation as a tool. The basic contents of this project are construction of highly accurate discretization methods for integral operators with weak singular kernel functions, new algorithms for fast matrix-vector multiplications, and new penalty functions, which are capable of being transplanted to solve other problems. For example, the expected achie

英文关键词: Robin inverse problem;boundary integral equation;regularization method;regularization parameter;fast algorithm

成为VIP会员查看完整内容
0

相关内容

专知会员服务
38+阅读 · 2021年8月20日
专知会员服务
11+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
64+阅读 · 2021年5月29日
专知会员服务
30+阅读 · 2021年5月8日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
26+阅读 · 2020年9月9日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
42+阅读 · 2020年7月29日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
CUDA高性能计算经典问题:归约
极市平台
1+阅读 · 2022年1月13日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
【ICML2021】低秩Sinkhorn 分解
专知
9+阅读 · 2021年8月20日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
专知会员服务
38+阅读 · 2021年8月20日
专知会员服务
11+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
64+阅读 · 2021年5月29日
专知会员服务
30+阅读 · 2021年5月8日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
26+阅读 · 2020年9月9日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
42+阅读 · 2020年7月29日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员