Structures in the solar corona are the main drivers of space weather processes that might directly or indirectly affect the Earth. Thanks to the most recent space-based solar observatories, with capabilities to acquire high-resolution images continuously, the structures in the solar corona can be monitored over the years with a time resolution of minutes. For this purpose, we have developed a method for automatic segmentation of solar corona structures observed in EUV spectrum that is based on a deep learning approach utilizing Convolutional Neural Networks. The available input datasets have been examined together with our own dataset based on the manual annotation of the target structures. Indeed, the input dataset is the main limitation of the developed model's performance. Our \textit{SCSS-Net} model provides results for coronal holes and active regions that could be compared with other generally used methods for automatic segmentation. Even more, it provides a universal procedure to identify structures in the solar corona with the help of the transfer learning technique. The outputs of the model can be then used for further statistical studies of connections between solar activity and the influence of space weather on Earth.
翻译:太阳日冕结构是空间气象过程可能直接或间接影响地球的主要驱动力。由于最近的空基太阳观测站有能力连续获取高分辨率图像,多年来日冕结构可以用分钟的解析时间来监测。为此目的,我们开发了一种在EUV光谱中观测到的太阳日冕结构的自动分离方法,该方法基于利用动态神经网络的深入学习方法;现有的输入数据集与我们基于目标结构人工说明的数据集一起进行了审查。事实上,输入数据集是开发模型性能的主要限制。我们的计算模型提供了日冕孔和活动区域的结果,这些结果可以与其他一般使用的自动分离方法进行比较。甚至更进一步,它提供了一个通用程序,用以在传输学习技术的帮助下确定日冕结构。然后,该模型的产出可用于对太阳活动与空间天气对地球的影响之间的联系进行进一步的统计研究。