The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, hence emotion recognition in dialogues is an important task. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Emotion recognition has always been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we create a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of the dialogue is annotated with one or more emotion categories from the 16 emotion classes including neutral, and their corresponding intensity values. We further propose strong contextual baselines that can detect emotion(s) and the corresponding intensity of an utterance given the conversational context.
翻译:人工智能(AI)的长期目标一直是创建人性化的对谈系统。 这种系统应该有能力与用户建立情感联系,因此对话中情感识别是一项重要任务。 对话中情感检测是一项艰巨的任务,因为人通常以不同程度的强度以单词表达多种情感。 此外,对话表达中的情感可能取决于先前的言辞,从而使任务更加复杂。 情感识别始终是巨大的需求。 然而,在对话中多标签情感和强度检测的现有数据集大多使用英语。 为此,我们在印地语中创建了一个名为EmoInHindi的大型对谈数据集,用于多标签情感和强度识别,包含1,814个对话,共44,247个言词。 我们用奥兹预知方式为犯罪受害人的心理健康和法律咨询准备了我们的数据集。 对话的每次内容都是用16个情感类中性及其相应强度值的一种或多种情感分类加以说明的。 我们进一步提出一个强有力的背景基线,可以检测情感的强度和强度。