Purpose: This article describes the interviews we conducted in late 2021 with 19 researchers at the Department of Classical Philology and Italian Studies at the University of Bologna. The main purpose was to shed light on the definition of the word "data" in the humanities domain, as far as FAIR data management practices are concerned, and on what researchers think of the term. Methodology: We invited one researcher for each of the official disciplinary areas represented within the department and all 19 accepted to participate in the study. Participants were then divided into 5 main research areas: philology and literary criticism, language and linguistics, history of art, computer science, archival studies. The interviews were transcribed and analysed using a grounded theory approach. Findings: A list of 13 research data types has been compiled thanks to the information collected from participants. The term "data" does not emerge as especially problematic, contrary to what has been reported elsewhere. Looking at current research management practices, methodologies and teamwork appear more central than previously reported. Originality: Our findings confirm that "data" within the FAIR framework should include all types of input and outputs humanities research work with, including publications. Also, the participants to this study appear ready for a discussion around making their research data FAIR: they do not find the terminology particularly problematic, while they rely on precise and recognised methodologies, as well as on sharing and collaboration with colleagues.


翻译:本篇文章描述了2021年后期我们在博洛尼亚大学古典哲学和意大利研究系与19名研究人员进行的访谈,主要目的是就FAIR数据管理做法而言,说明人类学领域“数据”一词的定义,以及研究人员对这一术语的看法。方法:我们邀请了本部每个官方学科领域的一名研究人员,所有19个都同意参加研究。然后,参与者被分为5个主要研究领域:哲学和文学批评、语言和语言、艺术历史、计算机科学、档案研究。访谈采用有根据的理论方法进行整理和分析。调查结果:由于从参与者那里收集的信息,13种研究数据类型清单已经编制完毕。“数据”一词与其他地方所报告的情况相反,并非特别成问题。看看目前的研究管理做法、方法和团队合作似乎比以前所报告的更为重要。我们的调查结果证实,FAIR框架内的“数据”应包括所有类型的投入和产出,人类学史、计算机科学、档案研究史。这些访谈应当采用有根据的理论进行。结果:由于从参与者那里收集的信息,13种研究数据类型已经汇编出来。“数据”并不象其他地方报告那样出现特别的术语。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
A Survey on Data Augmentation for Text Classification
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员